Interleukin-1beta induces a reactive astroglial phenotype via deactivation of the Rho GTPase-Rock axis

白细胞介素-1β通过Rho GTPase-Rock轴的失活诱导反应性星形胶质细胞表型

阅读:6
作者:Gareth R John, Lanfen Chen, Mark A Rivieccio, Carmen V Melendez-Vasquez, Adam Hartley, Celia F Brosnan

Abstract

The cytokine interleukin-1beta (IL-1beta) is critical to the formation of an astrocytic scar after CNS injury, but the mechanisms by which it induces a reactive phenotype remain unresolved. Here, we show that IL-1beta regulates the phenotype of astrocytes via deactivation of the Rho GTPase-Rho kinase (ROCK) pathway, which governs cellular morphology and migration via effects on F-actin and its interactions with focal adhesions, nonmuscle myosin, and microvillar adapter proteins of the ezrin-radixin-moesin (ERM) family. We found that IL-1beta induced cortical reorganization of F-actin and dephosphorylation of focal adhesion kinase, myosin light chain 2, and myosin phosphatase targeting subunit 1 in primary human astrocytes, and that all of these effects were mimicked by Rho-ROCK pathway blockade. We also found that IL-1beta conversely potentiated ERM phosphorylation, and that this effect was mediated via a Rho-ROCK-independent mechanism. Next, we used a rhotekin pulldown assay to confirm directly that IL-1beta deactivates Rho, and further demonstrated that a constitutively active Rho construct rescued astrocytes from developing an IL-1beta-induced reactive phenotype. These data implicate cytokine regulation of the Rho-ROCK pathway in the generation of a reactive astrogliosis, and we suggest that interventions targeted at this level may facilitate manipulation of the glial scar in inflammatory disorders of the human CNS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。