HIF1 α Promotes BMP9-Mediated Osteoblastic Differentiation and Vascularization by Interacting with CBFA1

HIF1α通过与CBFA1相互作用促进BMP9介导的成骨细胞分化和血管化

阅读:6
作者:Yuwan Li, Ziming Liu, Hong-De Wang, Jun Zhang, Miaoyuan Lin, Jianye Yang, Jiaxing Huang, Wenqiang Yan, Yingfang Ao

Abstract

Bone morphogenetic protein 9 (BMP9) as the most potent osteogenic molecule which initiates the differentiation of stem cells into the osteoblast lineage and regulates angiogenesis, remains unclear how BMP9-regulated angiogenic signaling is coupled to the osteogenic pathway. Hypoxia-inducible factor 1α (HIF1α) is critical for vascularization and osteogenic differentiation and the CBFA1, known as runt-related transcription factor 2 (Runx2) which plays a regulatory role in osteogenesis. This study investigated the combined effect of HIF1α and Runx2 on BMP9-induced osteogenic and angiogenic differentiation of the immortalized mouse embryonic fibroblasts (iMEFs). The effect of HIF1α and Runx2 on the osteogenic and angiogenic differentiation of iMEFs was evaluated. The relationship between HIF1α- and Runx2-mediated angiogenesis during BMP9-regulated osteogenic differentiation of iMEFs was evaluated by ChIP assays. We demonstrated that exogenous expression of HIF1α and Runx2 is coupled to potentiate BMP9-induced osteogenic and angiogenic differentiation both in vitro and animal model. Chromatin immunoprecipitation assays (ChIP) showed that Runx2 is a downstream target of HIF1α that regulates BMP9-mediated osteogenesis and angiogenic differentiation. Our findings reveal that HIF1α immediately regulates Runx2 and may originate an essential regulatory thread to harmonize osteogenic and angiogenic differentiation in iMEFs, and this coupling between HIF1α and Runx2 is essential for bone healing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。