Angiotensin II stimulates spinally projecting paraventricular neurons through presynaptic disinhibition

血管紧张素 II 通过突触前去抑制刺激脊髓投射的室旁神经元

阅读:6
作者:De-Pei Li, Shao-Rui Chen, Hui-Lin Pan

Abstract

Paraventricular nucleus (PVN) neurons that project to the spinal cord are important in the control of sympathetic outflow. Angiotensin II (Ang II) can stimulate PVN neurons, but its cellular mechanisms are not clear. In this study, we determined the effect of Ang II on the excitatory and inhibitory synaptic inputs to spinally projecting PVN neurons. Whole-cell patch-clamp recordings were performed on PVN neurons labeled by a retrograde fluorescence tracer injected into the thoracic spinal cord of rats. Immunocytochemistry labeling revealed that the immunoreactivity of angiotensin type 1 (AT1) receptors was colocalized with a presynaptic marker, synaptophysin, in the PVN. Application of 0.1-5 microm Ang II significantly decreased the amplitude of evoked GABAergic IPSCs in a concentration-dependent manner. Also, Ang II decreased the frequency of miniature IPSCs from 2.56 +/- 0.45 to 1.05 +/- 0.20 Hz (p < 0.05; n = 12), without affecting the amplitude and the decay time constant. The effect of Ang II on miniature IPSCs was blocked by losartan but not PD123319. However, Ang II had no effect on the evoked glutamatergic EPSCs and did not alter the frequency and amplitude of miniature EPSCs at concentrations that attenuated IPSCs. Furthermore, Ang II increased the firing rate of PVN neurons from 3.75 +/- 0.36 to 7.89 +/- 0.85 Hz (p < 0.05; n = 9), and such an effect was abolished by losartan. In addition, Ang II failed to excite PVN neurons in the presence of bicuculline. Thus, this study provides substantial new evidence that Ang II excites spinally projecting PVN neurons by attenuation of GABAergic synaptic inputs through activation of presynaptic AT1 receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。