Dystrophin Dp71 is critical for the clustered localization of potassium channels in retinal glial cells

肌营养不良蛋白 Dp71 对视网膜神经胶质细胞中钾通道的聚集定位至关重要

阅读:7
作者:Nathan C Connors, Paulo Kofuji

Abstract

The Müller cell is the principal glial cell of the vertebrate retina. The primary conductance in Müller cells is the inwardly rectifying potassium channel Kir4.1 (BIR10 and KAB-2), which is highly concentrated at the endfeet at the vitreal border and to processes enveloping blood vessels. Such asymmetric and clustered distribution of Kir4.1 channels in Müller cells is thought to be critical for the buffering of extracellular potassium concentration in retina. Herein we investigated whether the distribution and functional properties of Kir4.1 channels are dependent on expression of the Dp71, a dystrophin isoform expressed in Müller cells. Kir4.1 distribution was determined in mouse retinal sections and whole mounts using anti-Kir4.1 antibodies and confocal microscopy. In Müller cells from wild-type mice, Kir4.1 is highly clustered in their endfeet and perivascular processes. In contrast, in Müller cells from the mdx(3Cv) mouse, which lacks the expression of Dp71, the Kir4.1 immunoreactivity is evenly distributed throughout the cell membrane. Surface expression of Kir4.1 is not affected in mdx(3Cv) Müller cells as current density of barium-sensitive inward currents in mdx(3Cv) Müller cells are not different from wild type. Focal extracellular potassium increases in isolated Müller cells shows that Kir channels in the mdx(3Cv) cells, as opposed to wild type, are less prominently concentrated in their endfeet. In summary, our data indicate that Dp71 is critical for the clustering but not membrane expression of Kir4.1 in mouse Müller cells. These results point to a new role for dystrophin in glial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。