Voltage Contrast in Scanning Electron Microscopy to Distinguish Conducting Ag Nanowire Networks from Nonconducting Ag Nanowire Networks

利用扫描电子显微镜的电压对比来区分导电银纳米线网络和非导电银纳米线网络

阅读:5
作者:Kouji Suemori, Yuichi Watanabe, Nobuko Fukuda, Sei Uemura

Abstract

A study of the electrical properties of metallic nanowires requires a clear analysis of conductive networks. In this study, we demonstrated that the conducting networks of Ag nanowires (AgNW) could be visually observed by examination of the voltage contrast of the scanning electron microscopy (SEM) images, which was caused by the differences in the degrees of charging of AgNWs. When AgNWs dispersed on a quartz glass were irradiated by primary electrons, the substrate became negatively charged. This induced positive charges on the AgNWs in contact with the electrodes. As a result, AgNW networks connected to electrodes appeared dark in the SEM image, while the isolated AgNWs appeared brighter. By varying the acceleration voltage of the primary electrons, the extent of charging could be controlled, which, in turn, enabled the observation of the voltage contrast of AgNWs. Using the voltage contrast of SEM images, we could visually distinguish the AgNW networks having an electrical connection with the electrode from the ones that were not connected to the electrode.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。