Dual-Target Additively Manufactured Electrochemical Sensor for the Multiplexed Detection of Protein A29 and DNA of Human Monkeypox Virus

双目标增材制造电化学传感器用于多重检测人类猴痘病毒的蛋白质 A29 和 DNA

阅读:4
作者:Luiz Ricardo G Silva, Jéssica S Stefano, Cristiane Kalinke, Robert D Crapnell, Laís C Brazaca, Luiz H Marcolino-Junior, Marcio F Bergamini, Craig E Banks, Bruno C Janegitz

Abstract

Herein, we present the first 3D-printed electrochemical portable biodevice for the detection of monkeypox virus (MKPV). The electrochemical device consists of two biosensors: an immunosensor and a genosensor specifically designed for the detection of the protein A29 and a target DNA of MKPV, respectively. The electrodes were manufactured using lab-made ultraflexible conductive filaments composed of carbon black, recycled PLA from coffee pods, and castor oil as a plasticizer. The sensors created through 3D printing technology exhibited good reproducibility and repeatability of analytical responses. Furthermore, both the immunosensor and genosensor demonstrated excellent MKPV detection capabilities, with a linear range from 0.01 to 1.0 μmol L-1 for the antigen and 0.1 to 20.0 μmol L-1 for the DNA target. The biosensors achieved limits of detection of 2.7 and 29 nmol L-1 for the immunosensor and genosensor, respectively. Interference tests conducted with the biosensors demonstrated their selectivity for MKPV. Moreover, analyses of fortified human serum samples showed recoveries close to 100%, confirming the absence of significant matrix effects for MKPV analysis. Therefore, the 3D-printed multiplex device represents a viable and highly promising alternative for on-site, portable, and rapid point-of-care MKPV monitoring.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。