N6-methyladenosine regulates metabolic remodeling in kidney aging through transcriptional regulator GLIS1

N6-甲基腺苷通过转录调节因子 GLIS1 调节肾脏衰老中的代谢重塑

阅读:7
作者:Li Xu #, Shuo Chen #, Qiuling Fan #, Yonghong Zhu, Hang Mei, Jiao Wang, Hongyuan Yu, Ying Chen, Fan Liu0

Background

Age-related kidney impairment, characterized by tubular epithelial cell senescence and renal fibrosis, poses a significant global public health threat. Although N6-methyladenosine (m6A) methylation is implicated in various pathological processes, its regulatory mechanism in kidney aging remains unclear.

Conclusions

Our findings suggest that the m6A modification of GLIS1, activated by METTL3 and reduced in a YTHDF1-dependent manner, leads to kidney aging by regulating the metabolic shift from FAO to glycolysis. This mechanism provides a promising therapeutic target for kidney aging.

Methods

An m6A-mRNA epitranscriptomic microarray was performed to identify genes with abnormal m6A modifications in aged human kidney tissues. Histological, immunohistochemical, and immunofluorescent staining, western blot, and RT-qPCR were employed to examine the biological functions of targeted genes and m6A methyltransferases both in vivo and in vitro. RNA immunoprecipitation, chromatin immunoprecipitation, ribosomal immunoprecipitation, and luciferase reporter assays were used to investigate the specific interactions between m6A methyltransferases, targeted genes, and their downstream signals.

Results

Significantly lower m6A modification levels were observed in aged human kidney tissues. GLIS1, identified as a "metabolic remodeling factor," showed significantly reduced protein levels with abnormal m6A modifications. The downregulation of GLIS1 induced cell senescence and renal fibrosis by shifting metabolic remodeling from fatty acid oxidation (FAO) to glycolysis. Additionally, the methylated GLIS1 mRNA was regulated by the abnormal expression of METTL3 and YTHDF1. Silencing METTL3/YTHDF1 weakened the translation of GLIS1 and disrupted the balance between FAO and glycolysis. Conclusions: Our findings suggest that the m6A modification of GLIS1, activated by METTL3 and reduced in a YTHDF1-dependent manner, leads to kidney aging by regulating the metabolic shift from FAO to glycolysis. This mechanism provides a promising therapeutic target for kidney aging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。