Hyperbaric Oxygen Improves the Survival and Angiogenesis of Fat Grafts after Autologous Fat Transplantation

高压氧可改善自体脂肪移植后脂肪移植物的存活率和血管生成

阅读:8
作者:Fei Liu, Zhi Liang, Ye Cui, HaiBo Lin, ZhengDong Guo, WangChi Qin, Bin Cheng, WeiGuo Yang

Conclusion

HBO therapy regulated the immune response of fat grafts, stimulated their angiogenesis, and ultimately promoted their survival after AFT.

Methods

Twelve adult male SD rats were randomly divided into two groups after AFT: the control group (n = 6) and the HBO group (n = 6). The rats were killed at 7, 14, and 28 days after transplantation to take the transplanted adipose tissues. The volume and weight of the tissues were detected. The pathological changes in the adipose tissues were observed after H&E staining. Microvessel density and levels of transforming growth factor- (TGF-) β, tumor necrosis factor- (TNF-) α, and malondialdehyde (MDA) in the transplanted adipose tissues were measured with CD31 immunohistochemical stain, ELISA, and biochemical reagents, respectively. Additionally, the protein expression levels of vascular endothelial growth factor- (VEGF-) A and platelet-derived growth factor- (PDGF) A in the adipose tissues were detected by Western blot.

Objective

Currently, autologous fat transplantation (AFT) still has a low graft survival rate. Elevation of the AFT graft survival rate is a challenge. This study investigated the effect of hyperbaric oxygen (HBO) on AFT.

Results

HBO significantly preserved the volume and weight of the transplanted adipose tissue (p < 0.01) and maintained the pathological structure of the transplanted adipose tissue. HBO therapy was effective in reducing inflammatory factor (TGF-β and TNF-α) levels and oxidative stress (MDA) in the transplanted adipose tissue (p < 0.01) and significantly increased the level of CD31 and angiogenesis-related factors including VEGF-A and PDGF-A (p < 0.01) to promote angiogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。