Identification of Potential Human Ryanodine Receptor 1 Agonists and Molecular Mechanisms of Natural Small-Molecule Phenols as Anxiolytics

人类瑞尼丁受体 1 潜在激动剂的鉴定及天然小分子酚作为抗焦虑剂的分子机制

阅读:6
作者:Yahong Chen, Xiaohong Wang, Haifeng Zhai, Yanling Zhang, Jianmei Huang

Abstract

Natural small-molecule phenols (NSMPs) possess certain ubiquitous bioactivities including the anxiolytic effect. Ryanodine receptor 1 (RyR1) may be one of the potentially critical pharmacological targets for studying the anxiolytic activity of NSMPs. However, detailed molecular mechanisms of NSMPs have not been fully clarified. This research was intended to identify potent hRyR1 agonists from NSMPs and investigate whether RyR1 plays a role in their anxiolytic effect. Homology modeling and molecular docking analysis were performed using Accelrys Discovery Studio 2.5. The most appropriate concentrations of NSMPs to activate RyR1 were measured using the MTT assay. Fluorescence analyses of the intracellular calcium levels and western blotting analysis were carried out to validate whether NSMPs could regulate the calcium flux to some extent by activating RyR1. The results demonstrated that xanthotoxol and 5-hydroxy-1,4-naphthalenedione can be screened as hit compounds for potential agonists of hRyR1 to exert the anxiolytic effect. In conclusion, NSMPs might be a kind of pharmacological signal carrier, acting on RyR1 as an agonist and resulting in calcium ion mobilization from intracellular calcium ion store.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。