Impact of N-Terminal PEGylation on Synthesis and Purification of Peptide-Based Cancer Epitopes for Pancreatic Ductal Adenocarcinoma (PDAC)

端聚乙二醇化对胰腺导管腺癌 (PDAC) 肽基癌症表位合成和纯化的影响

阅读:8
作者:Omar F Luna, Yomkippur V Perez, Daniele P Ferrari, Sana S Sayedipour, Miriam Royo, Gerardo A Acosta, Luis J Cruz, Frauke Alves, Erik Agner, Magne O Sydnes, Fernando Albericio

Abstract

Peptide-based cancer vaccines have shown promising results in preclinical trials focusing on tumor immunotherapy. However, the presence of hydrophobic amino acid segments within these peptide sequences poses challenges in their synthesis, purification, and solubility, thereby hindering their potential use as cancer vaccines. In this study, we successfully synthesized peptide sequences derived from mesothelin (MSLN), a tumor-associated antigen overexpressed in pancreatic ductal adenocarcinoma (PDAC) by conjugating them with monodisperse polyethylene glycol (PEG). By PEGylating mesothelin epitopes of varying lengths (ranging from 9 to 38 amino acids) and hydrophobicity (60-90%), we achieved an effective method to improve the peptide yield and facilitate the processes of synthesis and purification. PEGylation significantly enhanced the solubility, facilitating the single-step purification of lengthy hydrophobic peptides. Most importantly, PEGylation did not compromise cell viability and had little to no effect on the immunogenicity of the peptides. In contrast, the addition of a palmitoyl group to increase immunogenicity led to reduced yield and solubility. Overall, PEGylation proves to be an effective technique for enhancing the solubility and broadening the range of utility of diverse long hydrophobic peptides.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。