An Enzybiotic Cocktail Effectively Disrupts Preformed Dual Biofilm of Staphylococcus aureus and Enterococcus faecalis

一种酶生物混合物可有效破坏金黄色葡萄球菌和粪肠球菌预先形成的双重生物膜

阅读:6
作者:Salim Manoharadas, Naushad Ahmad, Mohammad Altaf, Abdulwahed Fahad Alrefaei, Basel F Al-Rayes

Abstract

Multidrug-resistant bacterial infections are on the rise around the world. Chronic infections caused by these pathogens through biofilm mediation often complicate the situation. In natural settings, biofilms are often formed with different species of bacteria existing synergistically or antagonistically. Biofilms on diabetic foot ulcers are formed predominantly by two opportunistic pathogens, Staphylococcus aureus and Enterococcus faecalis. Bacteriophages and phage-based proteins, including endolysins, have been found to be active against biofilms. In this study, we evaluated the activity of two engineered enzybiotics either by themselves or as a combination against a dual biofilm formed by S. aureus and E. faecalis in an inert glass surface. An additive effect in rapidly disrupting the preformed dual biofilm was observed with the cocktail of proteins, in comparison with mono treatment. The cocktail-treated biofilms were dispersed by more than 90% within 3 h of treatment. Apart from biofilm disruption, bacterial cells embedded in the biofilm matrix were also effectively reduced by more than 90% within 3 h of treatment. This is the first instance where a cocktail of engineered enzybiotics has been effectively used to impede the structural integrity of a dual biofilm.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。