Evaluation of CNTs and SiC Whiskers Effect on the Rheology and Mechanical Performance of Metakaolin-Based Geopolymers

评估碳纳米管和碳化硅晶须对偏高岭土基土聚物的流变性和机械性能的影响

阅读:10
作者:Madeleing Taborda-Barraza, Francine Padilha, Laura Silvestro, Afonso Rangel Garcez de Azevedo, Philippe Jean Paul Gleize

Abstract

Despite geopolymers having emerged as a more sustainable alternative to Portland cement, their rheological properties still need to be thoroughly investigated, aiming at the material's applicability. Additionally, studies that evaluated the fresh state of geopolymer composites with nanomaterials are scarce. Thus, two metakaolin-based geopolymer systems were reinforced with nanomaterials with a similar geometry: carbon nanotubes (CNT) and silicon carbide whiskers (SCW). The nanomaterials incorporation was assessed by rotational rheometry (conducted up to 110 min), isothermal calorimetry, compressive strength after 7 and 28 days, and the microstructure was investigated using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). CNT and SCW incorporation (0.20 wt.%) did not significantly affect the yield stress and viscosity of the R2-group (based on metakaolin type 2), while increasing the rheological parameters up to 56.0% for the R1-group (based on metakaolin type 1). Both additions modified the reaction kinetics. Increments of up to 40.7% were observed in the compressive strength of geopolymer pastes with the incorporation of a SCW content of 0.2 wt.%. XRD and FTIR results suggest similar structural modifications between precursors. Nevertheless, R2 showed substantial transformations while the R1 group exhibited anhydrous material that can react over time. Overall, incorporating CNT and SCW contributed to higher mechanical increments on systems with average mechanical strength (R1) compared to systems with higher potential mechanical performance (R2).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。