Ultrasound-Assisted Synthesis of Nonmetal-Doped Titanium Dioxide Photocatalysts for Simultaneous H2 Production and Chemical Oxygen Demand Removal from Industrial Wastewater

超声波辅助合成非金属掺杂二氧化钛光催化剂用于同时生产 H2 并去除工业废水中的化学需氧量

阅读:8
作者:Natjakorn Jandam, Karn Serivalsatit, Mali Hunsom, Kejvalee Pruksathorn

Abstract

A series of nonmetal-doped titanium dioxide (Nm x /TiO2, where x is the weight fraction of nonmetal elements) photocatalysts was prepared via ultrasonic-assisted impregnation for simultaneous hydrogen (H2) production and chemical oxygen demand (COD) removal from industrial wastewater. Three types of Nm elements, carbon (C), silicon (Si), and phosphorus (P), were explored. The P1/TiO2 exhibited a higher photocatalytic activity for H2 production and COD removal than the C1/TiO2 and Si1/TiO2 photocatalysts. Approximately 6.43 mmol/g photocatalyst of H2 was produced, and around 26% COD removal was achieved at a P1/TiO2 loading of 4.0 g/L, a light intensity of 5.93 mW/cm2, and a radiation time of 4 h. This is because the P1/TiO2 photocatalyst exhibited lower point of zero charge values and a more appropriate band position compared with other Nm x /TiO2 photocatalysts to produce H+, which can consequently form H2, and reactive oxygen species (HO· and O2 · -), which serve as oxidizing agents to degrade the organic pollutants. Increasing the content of the P element doped into the TiO2-based material up to 7.0% by weight enhanced the H2 production and COD removal up to 8.34 mmol/g photocatalyst and 50.6%, respectively. This is attributed to the combined effect of the point of zero charge value and the S BET of the prepared photocatalysts. The photocatalytic activity of the P7/TiO2 photocatalyst was still higher than the TiO2-based material after the fourth use.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。