Endocannabinoid-dependent homeostatic regulation of inhibitory synapses by miniature excitatory synaptic activities

内源性大麻素依赖性抑制性突触的微兴奋性突触活动稳态调节

阅读:5
作者:Si-yu Zhang, Min Xu, Qing-long Miao, Mu-ming Poo, Xiao-hui Zhang

Abstract

Homeostatic regulation of synaptic strength in response to persistent changes of neuronal activity plays an important role in maintaining the overall level of circuit activity within a normal range. Absence of miniature EPSCs (mEPSCs) for a few hours is known to cause upregulation of excitatory synaptic strength, suggesting that mEPSCs contribute to the maintenance of excitatory synaptic functions. In the present study, we found that the absence of mEPSCs for 1-3 h also resulted in homeostatic suppression of presynaptic functions of inhibitory synapses in acute cortical slices from juvenile rats, as suggested by the reduced frequency (but not amplitude) of miniature IPSCs (mIPSCs) as well as the reduced amplitude of IPSCs. This homeostatic regulation depended on endocannabinoid (eCB) signaling, because blockade of either the activation of cannabinoid type-1 receptors (CB1Rs) or the synthesis of its endogenous ligand 2-arachidonoylglycerol (2-AG) abolished the suppression of inhibitory synapses caused by the absence of mEPSCs. Blockade of group I metabotropic glutamate receptors (mGluR-I) also abolished the suppression of inhibitory synapses, consistent with the mGluR-I requirement for eCB synthesis and release in cortical synapses. Furthermore, this homeostatic regulation also required eukaryotic elongation factor-2 (eEF2)-dependent protein synthesis, but not gene transcription. Activation of eEF2 alone was sufficient to suppress the mIPSC frequency, an effect abolished by inhibiting CB1Rs. Thus, mEPSCs contribute to the maintenance of inhibitory synaptic function and the absence of mEPSCs results in presynaptic suppression of inhibitory synapses via protein synthesis-dependent elevation of eCB signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。