Modulation by Neuropeptides with Overlapping Targets Results in Functional Overlap in Oscillatory Circuit Activation

具有重叠靶标的神经肽的调节导致振荡电路激活中的功能重叠

阅读:8
作者:Elizabeth M Cronin, Anna C Schneider, Farzan Nadim, Dirk Bucher

Abstract

Neuromodulation lends flexibility to neural circuit operation but the general notion that different neuromodulators sculpt neural circuit activity into distinct and characteristic patterns is complicated by interindividual variability. In addition, some neuromodulators converge onto the same signaling pathways, with similar effects on neurons and synapses. We compared the effects of three neuropeptides on the rhythmic pyloric circuit in the stomatogastric ganglion of male crabs, Cancer borealis Proctolin (PROC), crustacean cardioactive peptide (CCAP), and red pigment concentrating hormone (RPCH) activate the same modulatory inward current, I MI, and have convergent actions on synapses. However, while PROC targets all four neuron types in the core pyloric circuit, CCAP and RPCH target the same subset of only two neurons. After removal of spontaneous neuromodulator release, none of the neuropeptides restored the control cycle frequency, but all restored the relative timing between neuron types. Consequently, differences between neuropeptide effects were mainly found in the spiking activity of different neuron types. We performed statistical comparisons using the Euclidean distance in the multidimensional space of normalized output attributes to obtain a single measure of difference between modulatory states. Across preparations, the circuit output in PROC was distinguishable from CCAP and RPCH, but CCAP and RPCH were not distinguishable from each other. However, we argue that even between PROC and the other two neuropeptides, population data overlapped enough to prevent reliable identification of individual output patterns as characteristic for a specific neuropeptide. We confirmed this notion by showing that blind classifications by machine learning algorithms were only moderately successful.Significance Statement It is commonly assumed that distinct behaviors or circuit activities can be elicited by different neuromodulators. Yet it is unknown to what extent these characteristic actions remain distinct across individuals. We use a well-studied circuit model of neuromodulation to examine the effects of three neuropeptides, each known to produce a distinct activity pattern in controlled studies. We find that, when compared across individuals, the three peptides elicit activity patterns that are either statistically indistinguishable or show too much overlap to be labeled characteristic. We ascribe this to interindividual variability and overlapping subcellular actions of the modulators. Because both factors are common in all neural circuits, these findings have broad significance for understanding chemical neuromodulatory actions while considering interindividual variability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。