Vetting of New 2,5-Bis (2,2,2-trifluoroethoxy) Phenyl-Linked 1,3-Thiazolidine-4-one Derivatives as AURKA and VEGFR-2 Inhibitor Antiglioma Agents Assisted with In Vitro and In Silico Studies

借助体外和计算机模拟研究对新型 2,5-双(2,2,2-三氟乙氧基)苯基连接的 1,3-噻唑烷-4-酮衍生物作为 AURKA 和 VEGFR-2 抑制剂抗胶质瘤药物进行审查

阅读:11
作者:Sathyanarayana D Shankara, Arun M Isloor, Pavan K Jayaswamy, Praveenkumar Shetty, Debashree Chakraborty, Pushyaraga P Venugopal

Abstract

The bioactivity of 1,3-thiazolidin-4-one derivatives with a 2,5-bis (2,2,2-trifluoroethoxy) phenyl moiety was computationally developed and evaluated. All of the synthesized thiazolidin-4-one derivatives have their chemical structures characterized using a variety of methods, including nuclear magnetic resonance (NMR) (1H and 13C), high-resolution mass spectrometry (HRMS), and Fourier transform infrared (FTIR) radiation. A human glioblastoma cancer cell line (LN229) was used to investigate the purified derivatives' antiglioma cancer efficacy. By using the MTT, colony formation, and tunnel tests, respectively, the in vitro cytotoxic and apoptotic effects of these compounds were assessed. Thiazolidin-4-one derivatives 5b, 5c, and 5e were discovered to have the best efficacy against glioblastoma cells out of all of these compounds. The derivatives 5b, 5c, and 5e were determined to have respective IC50 values of 9.48, 12.16, and 6.43 g/mL. Computation results showed that the bioactivity evaluations of the compounds were quite significant. The bridging -NH group forms a hydrogen bond with Glu 260 of synthesized derivatives 5b, 5c, 5d, 5e, and 5h. The vast majority of freshly developed compounds obeyed Lipinski's rule of five, which is in line with the results that the ADMET model predicted. Additionally, molecular docking evaluation and molecular dynamics simulation investigations against the proteins AURKA and VEGFR-2 were conducted for the synthesized compounds to incorporate both in silico and in vitro data. The findings revealed that almost all of the compounds had considerable binding to AURKA and VEGFR-2 residues, with binding affinities ranging from -9.8 to -7.9 kcal/mol. Consequently, the results of the biological investigations and the docking scores demonstrated that thiazolidinone molecule 5e containing 4-chlorophenyl substituent may be considered as a potential moiety for glioblastoma cancer treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。