Evaluation of Cell Proliferation and Wound Healing Effects of Vitamin A Palmitate-Loaded PLGA/Chitosan-Coated PLGA Nanoparticles: Preparation, Characterization, Release, and Release Kinetics

维生素 A 棕榈酸酯负载 PLGA/壳聚糖包覆 PLGA 纳米粒子的细胞增殖和伤口愈合效果评估:制备、表征、释放和释放动力学

阅读:5
作者:Lala Baghirova, Elif Kaya Tilki, A Alper Öztürk

Abstract

In this study, vitamin A palmitate (VAP)-loaded poly(lactic-co-glycolic acid) (PLGA)/chitosan-coated PLGA nanoparticle (NP) systems were prepared by the nanoprecipitation technique. The prepared systems were characterized by parameters such as particle size, polydispersity index (PDI), ζ-potential, encapsulation efficiency, in vitro dissolution, and release kinetic study. Then, the cytotoxicity and wound healing profiles of the designed NP formulations in HaCaT (human keratinocyte skin cell lines) were determined. The particle size of VAP-loaded NPs was obtained between 196.33 ± 0.65 and 669.23 ± 5.49 nm. PDI data proved that all NPs were prepared as high quality and monodisperse. While negative ζ-potential values of Blank-NP-1 and NP-1 encoded PLGA NP formulations were obtained, positive ζ-potential was obtained in chitosan-coated NPs. In vitro release studies of NPs observed rapid dissolution in the first 1-6 h, but prolonged dissolution of VAP after rapid dissolution. As a result of cell culture studies and wound healing activity studies, it was determined that NP-7 was the most effective. It was thought that the reason for this was that the NP-7 coded formulation was a chitosan-coated PLGA nanoparticle with the smallest particle size, and it was concluded that the efficiency of VAP was increased with its nanoparticle structure. This study demonstrated the similar wound healing effects of VAP-loaded nanoparticle systems, in particular NP-7, which increases keratinocyte cell proliferation at lower concentrations (10 μg·mL-1) than vitamin A alone (100 μg·mL-1). VAP-loaded nanocarriers that can be used in the pharmaceutical industry have been successfully produced and the results obtained have been evaluated as promising for this industry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。