Unprecedented Treatment Strategy of Aquatic Environments: Oxidative Degradation of Penicillin G by Chromium Trioxide in Acidic Media and the Impact of Metal Ion Catalysts: Kinetics and Mechanistic Insights

前所未有的水环境处理策略:酸性介质中三氧化铬对青霉素 G 的氧化降解以及金属离子催化剂的影响:动力学和机理见解

阅读:4
作者:Ahmed Fawzy, Arafat Toghan

Abstract

Degradation kinetics and pathways of the antibiotic penicillin G (Pen) have been examined via oxidation by chromium trioxide (CrVI) in aqueous sulfuric and perchloric acid media. The oxidation reactions were monitored by spectrophotometry at 298 K. In both acidic media, penicillin G oxidation was set to proceed through acid catalysis. The stoichiometry of the reactions designated that 3 moles of Pen required 2 moles of CrVI. The kinetics of Pen oxidation in both acids was of the first order with regard to [CrVI] and less-than unity order with regard to [Pen] and [H+] in their variation. The rates of reactions displayed negligible impacts upon altering ionic strengths or dielectric constants of the reaction media. There was no intrusion of free radicals throughout the redox reactions. Addition of low concentrations of Ni2+, Cu2+, and Zn2+ ions enhanced the oxidation rates, while addition of Cr3+ as a described product did not noteworthily alter the rates. Under comparable investigational circumstances, the oxidation rates in HClO4 were almost 2-fold greater than in H2SO4. The oxidation products of penicillin G were identified by spectral analysis and spot tests as phenyl acetic acid, 2-formyl-5,5-dimethyl-thiazolidine-4-carboxlate ion, ammonium ion, and carbon dioxide. Reliance of reaction rates on temperature has been explored, and the activation and thermodynamic parameters were estimated and debated. In view of the noted reactions' orders and products' identification, a plausible mechanism for the oxidation reactions was suggested. The derived rate law was set to be in accordance with the acquired results. This study offers an unprecedented simple and low-cost treatment method for removal or degradation of certain pollutants for protecting the environment and human health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。