Characterization of the Biological Fingerprint and Identification of Associated Parameters in Stress Fractures by FTIR Spectroscopy

通过 FTIR 光谱法表征应力性骨折的生物指纹并识别相关参数

阅读:5
作者:Monica Maribel Mata-Miranda, Melissa Guerrero-Ruiz, Juan Ramon Gonzalez-Fuentes, Carlos Martin Hernandez-Toscano, Jesus Rafael Garcia-Andino, Miguel Sanchez-Brito, Gustavo Jesus Vazquez-Zapien

Conclusions

The bone with an SF presented alterations in its biochemical composition, showing bone immaturity, which broadens the panorama of the condition to investigate future treatments or prophylactic techniques.

Methods

Previous written informed consent was obtained, and samples of the hip with an SF (n = 11) and healthy bone from the femur with traumatic fracture (n = 5) were obtained and analyzed employing FTIR spectroscopy and its biochemical mapping function. Then, using FTIR spectra and the map, the collagen content and ratios corresponding to matrix maturity, mineralization, carbonate substitution, acid phosphate substitution, and crystallinity were calculated. Moreover, a histopathological analysis through Masson's staining was conducted.

Results

The biochemical analysis showed that the bone with an SF presented a bone immaturity characterized by a higher content of collagen, lower matrix maturity, mineralization, carbonate and acid phosphate substitutions, and greater crystallinity compared to the healthy bone, being checked by the ratio analysis and biochemical mapping. Besides, Masson's stain showed a higher collagen content in the bone with an SF. Conclusions: The bone with an SF presented alterations in its biochemical composition, showing bone immaturity, which broadens the panorama of the condition to investigate future treatments or prophylactic techniques.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。