The link between SARS-CoV-2 related microglial reactivity and astrocyte pathology in the inferior olivary nucleus

SARS-CoV-2 相关小胶质细胞反应性与下橄榄核星形胶质细胞病理之间的联系

阅读:5
作者:Nacoya Madden, Ying Zi Jessy Mei, Kelly Jakubiak, Juncheng Li, Gunnar Hargus, James E Goldman, Osama Al-Dalahmah

Abstract

The pathological involvement of the central nervous system in SARS-CoV2 (COVID-19) patients is established. The burden of pathology is most pronounced in the brain stem including the medulla oblongata. Hypoxic/ischemic damage is the most frequent neuropathologic abnormality. Other neuropathologic features include neuronophagia, microglial nodules, and hallmarks of neurodegenerative diseases: astrogliosis and microglial reactivity. It is still unknown if these pathologies are secondary to hypoxia versus a combination of inflammatory response combined with hypoxia. It is also unknown how astrocytes react to neuroinflammation in COVID-19, especially considering evidence supporting the neurotoxicity of certain astrocytic phenotypes. This study aims to define the link between astrocytic and microglial pathology in COVID-19 victims in the inferior olivary nucleus, which is one of the most severely affected brain regions in COVID-19, and establish whether COVID-19 pathology is driven by hypoxic damage. Here, we conducted neuropathologic assessments and multiplex-immunofluorescence studies on the medulla oblongata of 18 COVID-19, 10 pre-pandemic patients who died of acute respiratory distress syndrome (ARDS), and 7-8 control patients with no ARDS or COVID-19. The comparison of ARDS and COVID-19 allows us to identify whether the pathology in COVID-19 can be explained by hypoxia alone, which is common to both conditions. Our results showed increased olivary astrogliosis in ARDS and COVID-19. However, microglial density and microglial reactivity were increased only in COVID-19, in a region-specific manner. Also, olivary hilar astrocytes increased YKL-40 (CHI3L1) in COVID-19, but to a lesser extent than ARDS astrocytes. COVID-19 astrocytes also showed lower levels of Aquaporin-4 (AQP4), and Metallothionein-3 in subsets of COVID-19 brain regions. Cluster analysis on immunohistochemical attributes of astrocytes and microglia identified ARDS and COVID-19 clusters with correlations to clinical history and disease course. Our results indicate that olivary glial pathology and neuroinflammation in the COVID-19 cannot be explained solely by hypoxia and suggest that failure of astrocytes to upregulate the anti-inflammatory YKL-40 may contribute to the neuroinflammation. Notwithstanding the limitations of retrospective studies in establishing causality, our experimental design cannot adequately control for factors external to our design. Perturbative studies are needed to confirm the role of the above-described astrocytic phenotypes in neuroinflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。