Deciphering the role of hydrophobic and hydrophilic bile acids in angiogenesis using in vitro and in vivo model systems

利用体外和体内模型系统揭示疏水性和亲水性胆汁酸在血管生成中的作用

阅读:5
作者:Somanath Kundu, Sandhya Bansal, Kalai Mangai Muthukumarasamy, Chetana Sachidanandan, Rajender K Motiani, Avinash Bajaj

Abstract

Bile acids have emerged as strong signaling molecules capable of influencing various biological processes like inflammation, apoptosis, cancer progression and atherosclerosis depending on their chemistry. In the present study, we investigated the effect of major hydrophobic bile acids lithocholic acid (LCA) and deoxycholic acid (DCA) and hydrophilic bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) on angiogenesis. We employed human umbilical vein endothelial cells (HUVECs) and zebrafish embryos as model systems for studying the role of bile acids in angiogenesis. Our studies revealed that the hydrophilic CDCA enhanced ectopic vessel formation as observed by the increase in the number of sub-intestinal vessels (SIVs) in the zebrafish embryos. The pro-angiogenic role of CDCA was further corroborated by in vitro vessel formation studies performed with human umbilical vein endothelial cells (HUVECs), whereas the hydrophobic LCA reduced tubulogenesis and was toxic to the zebrafish embryos. We validated that CDCA enhances angiogenesis by increasing the expression of vascular growth factor receptors (VEGFR1 and VEGFR2) and matrix metalloproteinases (MMP9) and by decreasing the expression of adhesion protein vascular endothelial cadherin (VE-cadherin). Our work implicates that the nature of bile acids plays a critical role in dictating their biological functions and in regulating angiogenesis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。