Insight into the Hydrolytic Selectivity of β-Glucosidase to Enhance the Contents of Desired Active Phytochemicals in Medicinal Plants

了解 β-葡萄糖苷酶的水解选择性以提高药用植物中所需活性植物化学物质的含量

阅读:5
作者:Young Soo Kim, Jin Yeul Ma

Abstract

Most glycosides in herbal medicines become pharmacologically active after hydrolysis or subsequent metabolism to respective aglycones. Hence, the hydrolytic efficiency of glycosidase is a crucial determinant of the pharmacological efficacy of herbal glycosides. In this study, we investigated the enzymatic conversion of the four herbal extracts and their glycosides using the glycoside hydrolase family 3 β-glucosidase from Lactobacillus antri (rBGLa). We show that β-glucosidase substrate specificity depends on the arrangements and linkage types of sugar residues in glycosides. The enzyme rBGLa showed higher hydrolytic selectivity for glucopyranoside than for glucuronide and rhamnopyranoside, and specificity for 1→6 rather than 1→2 linkages. In addition, in silico 3D structural models suggested that D243 and E426 of rBGLa act as catalytic nucleophile and acid/base residues, respectively. These experiments also suggested that substrate specificity is determined by interactions between the C6 residue of the sugar moiety of the substrate glycoside and the oxygen OD1 of D56 in rBGLa. Therefore, despite the broad substrate spectrum of β-glucosidase, differences in hydrolytic selectivity of β-glucosidases for glycoside structures could be exploited to enhance the hydrolysis of the desired medicinal glycosides in herbs using tailored β-glucosidases, allowing for improvement of specific potencies of herbal medicines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。