Introduction of the -B(OH)2 group into a graphene motif for pz orbital removal and ferromagnetic modulation

将 -B(OH)2 基团引入石墨烯基体中,用于去除 pz 轨道和调节铁磁

阅读:6
作者:Di Zhang, Bo Gao, Yuqi Ouyang, Song Xu, Qingyong Tian, Wenzhuo Wu, Qun Xu

Abstract

Room-temperature ferromagnetism in graphene has attracted considerable attention due to its potential application as spintronics. Theoretically, magnetic moment of graphene can be generated by removing a single pz orbital from the π system, which introduces an unpaired electron into the graphene motif for magnetic coupling. In this work, pz orbital of graphene is experimentally removed by cleaving the π bond of graphene using H3BO3 with the assistance of supercritical CO2 (SC CO2), which simultaneously introduces -B(OH)2 groups and unpaired electrons. As a result, ferromagnetic coupling between unpaired electrons substantially enhances the magnetic properties of the 2D graphene motif, leading to room-temperature ferromagnetism. Overall, unpaired electrons were introduced into a 2D graphene motif through π bond cleavage, which provides a novel approach for magnetic manipulation of 2D materials with conjugated structures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。