Regulation of an Aplysia bag-cell neuron cation channel by closely associated protein kinase A and a protein phosphatase

密切相关的蛋白激酶 A 和蛋白磷酸酶对海兔袋细胞神经元阳离子通道的调节

阅读:5
作者:Neil S Magoski

Abstract

Ion channel regulation by closely associated kinases or phosphatases has emerged as a key mechanism for orchestrating neuromodulation. An exemplary case is the nonselective cation channel that drives the afterdischarge in Aplysia bag cell neurons. Initial studies showed that this channel is modulated by both a closely associated PKC and a serine/threonine protein phosphatase (PP). In excised, inside-out patches, the addition of ATP (a phosphate source) increases open probability (P(O)) through PKC, and this is reversed by the PP. Previous work also reported that, in certain cases, ATP can decrease cation channel P(O). The present study characterizes and provides a mechanism for this decreased P(O) ATP response. The kinetic change for channels inhibited by ATP was identical to the previously reported effect of exogenously applied protein kinase A (PKA) (i.e., a lengthening of the third closed-state time constant). The decreased P(O) ATP response was blocked by the PKA inhibitor peptide PKA(6-22), and its reversal was prevented by the PP inhibitor microcystin-LR. Furthermore, PKA(6-22) did not alter the increased P(O) ATP response. This suggests that both PKA and a PP are closely associated with these cation channels, but PKA and PKC are not simultaneously targeted. After an afterdischarge, the bag cell neurons are refractory and fail to respond to subsequent stimulation. The association of PKA with the cation channel may contribute to this decrease in excitability. Altering the constituents of a regulatory complex, such as exchanging PKA for PKC, may represent a general mechanism to precisely control ion channel function and excitability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。