Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson's disease

胚胎干细胞衍生的 Pitx3 增强绿色荧光蛋白中脑多巴胺神经元在荧光激活细胞分选富集后存活下来,并在帕金森病动物模型中发挥作用

阅读:5
作者:Eva Hedlund, Jan Pruszak, Thomas Lardaro, Wesley Ludwig, Angel Viñuela, Kwang-Soo Kim, Ole Isacson

Abstract

Both fetal ventral mesencephalic (VM) and embryonic stem (ES) cell-derived dopamine neurons have been used successfully to correct behavioral responses in animal models of Parkinson's disease. However, grafts derived from fetal VM cells or from ES cells contain multiple cell types, and the majority of these cells are not dopamine neurons. Isolation of ES cell-derived dopamine neurons and subsequent transplantation would both elucidate the capacity of these neurons to provide functional input and also further explore an efficient and safer use of ES cells for the treatment of Parkinson's disease. Toward this goal, we used a Pitx3-enhanced green fluorescent protein (Pitx3-eGFP) knock-in mouse blastocyst-derived embryonic stem (mES) cell line and fluorescence-activated cell sorting (FACS) to select and purify midbrain dopamine neurons. Initially, the dopaminergic marker profile of intact Pitx3-eGFP mES cultures was evaluated after differentiation in vitro. eGFP expression overlapped closely with that of Pitx3, Nurr1, Engrailed-1, Lmx1a, tyrosine hydroxylase (TH), l-aromatic amino acid decarboxylase (AADC), and vesicular monoamine transporter 2 (VMAT2), demonstrating that these cells were of a midbrain dopamine neuron character. Furthermore, postmitotic Pitx3-eGFP(+) dopamine neurons, which constituted 2%-5% of all live cells in the culture after dissociation, could be highly enriched to >90% purity by FACS, and these isolated neurons were viable, extended neurites, and maintained a dopaminergic profile in vitro. Transplantation to 6-hydroxydopamine-lesioned rats showed that an enriched dopaminergic population could survive and restore both amphetamine- and apomorphine-induced functions, and the grafts contained large numbers of midbrain dopamine neurons, which innervated the host striatum. Disclosure of potential conflicts of interest is found at the end of this article.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。