Human C3 mutation reveals a mechanism of dense deposit disease pathogenesis and provides insights into complement activation and regulation

人类 C3 突变揭示了致密沉积物疾病的发病机制,并为补体激活和调节提供了见解

阅读:7
作者:Rubén Martínez-Barricarte, Meike Heurich, Francisco Valdes-Cañedo, Eduardo Vazquez-Martul, Eva Torreira, Tamara Montes, Agustín Tortajada, Sheila Pinto, Margarita Lopez-Trascasa, B Paul Morgan, Oscar Llorca, Claire L Harris, Santiago Rodríguez de Córdoba

Abstract

Dense deposit disease (DDD) is a severe renal disease characterized by accumulation of electron-dense material in the mesangium and glomerular basement membrane. Previously, DDD has been associated with deficiency of factor H (fH), a plasma regulator of the alternative pathway (AP) of complement activation, and studies in animal models have linked pathogenesis to the massive complement factor 3 (C3) activation caused by this deficiency. Here, we identified a unique DDD pedigree that associates disease with a mutation in the C3 gene. Mutant C(3923ΔDG), which lacks 2 amino acids, could not be cleaved to C3b by the AP C3-convertase and was therefore the predominant circulating C3 protein in the patients. However, upon activation to C3b by proteases, or to C3(H&sub2;O) by spontaneous thioester hydrolysis, C(3923ΔDG) generated an active AP C3-convertase that was regulated normally by decay accelerating factor (DAF) but was resistant to decay by fH. Moreover, activated C(3b923ΔDG) and C3(H&sub2;O)(923ΔDG) were resistant to proteolysis by factor I (fI) in the presence of fH, but were efficiently inactivated in the presence of membrane cofactor protein (MCP). These characteristics cause a fluid phase-restricted AP dysregulation in the patients that continuously activated and consumed C3 produced by the normal C3 allele. These findings expose structural requirements in C3 that are critical for recognition of the substrate C3 by the AP C3-convertase and for the regulatory activities of fH, DAF, and MCP, all of which have implications for therapeutic developments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。