Ligand-induced reduction concerted with coating by atomic layer deposition on the example of TiO2-coated magnetite nanoparticles

以 TiO2 包覆磁铁矿纳米粒子为例的配体诱导还原与原子层沉积包覆协同作用

阅读:8
作者:Sarai García-García, Alberto López-Ortega, Yongping Zheng, Yifan Nie, Kyeongjae Cho, Andrey Chuvilin, Mato Knez

Abstract

Atomic layer deposition is a chemical deposition technology that provides ultimate control over the conformality of films and their thickness, even down to Ångström-scale precision. Based on the marked superficial character and gas phase process of the technique, metal sources and their ligands shall ideally be highly volatile. However, in numerous cases those ligands corrode the substrate or compete for adsorption sites, well-known as side reactions of these processes. Therefore, the ability to control such side reactions might be of great interest, since it could achieve synchronous coating and alteration of a substrate in one process, saving time and energy otherwise needed for a post-treatment of the sample. Consequently, advances in this way must require understanding and control of the chemical processes that occur during the coating. In this work, we show how choosing an appropriate ligand of the metal source can unveil a novel approach to concertedly coat and reduce γ-Fe2O3 nanoparticles to form a final product composed of Fe3O4/TiO2 core/shell nanoparticles. To this aim, we envisage that appropriate design of precursors and selection of substrates will pave the way for numerous new compositions, while the ALD process itself allows for easy upscaling to large amounts of coated and reduced particles for industrial use.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。