Factor VIII binding affects the mechanical unraveling of the A2 domain of von Willebrand factor

因子 VIII 结合影响血管性血友病因子 A2 结构域的机械解离

阅读:8
作者:Wenpeng Cao, Wenjing Cao, Wei Zhang, X Long Zheng, X Frank Zhang

Background

Proteolytic cleavage of von Willebrand factor (VWF) by ADAMTS13 is crucial for normal hemostasis. Our previous studies demonstrate that binding of coagulation factor VIII (or FVIII) to VWF enhances the proteolytic cleavage of VWF by ADAMTS13 under shear. Objectives: Present study aims to determine the mechanism underlying FVIII-mediated enhancing effect on VWF proteolysis by ADAMTS13 under force.

Conclusions

Our results suggest that binding of FVIII to D'D3 and/or A2 may alter the mechanical property in the central A2 domain. The findings provide novel insight into the molecular mechanism underlying FVIII-dependent regulation of VWF proteolysis by ADAMTS13 under mechanical force.

Methods

Single molecular force spectroscopy, atomic force microscopy, and surface plasmon resonance are all used.

Results

Using single molecule force spectroscopy, we show that an addition of FVIII (~5 nmol/L) to D'D3 or D'D3A1 does not significantly alter force-induced unfolding of these fragments; however, an addition of FVIII at the same concentration to D'D3A1A2 eliminates its long unfolding event at ~40 nm, suggesting that binding of FVIII to D'D3 and/or A2 may result in force-induced conformational changes in A2 domain. Atomic force spectroscopy further demonstrates the direct binding between FVIII and D'D3 (or A2) with an intrinsic 2-dimensional off-rate (k0 ) of 0.02 ± 0.01/s (or 0.3 ± 0.1/s). The direct binding interaction between FVIII and A2 is further confirmed with the surface plasmon resonance assay, with a dissociation constant of ~0.2 μmol/L; no binding is detected between FVIII and A1 under the same conditions. Conclusions: Our results suggest that binding of FVIII to D'D3 and/or A2 may alter the mechanical property in the central A2 domain. The findings provide novel insight into the molecular mechanism underlying FVIII-dependent regulation of VWF proteolysis by ADAMTS13 under mechanical force.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。