Triggering Breast Cancer Apoptosis via Cyclin-Dependent Kinase Inhibition and DNA Damage by Novel Pyrimidinone and 1,2,4-Triazolo[4,3- a]pyrimidinone Derivatives

新型嘧啶酮和 1,2,4-三唑并[4,3- a]嘧啶酮衍生物通过抑制细胞周期蛋白依赖性激酶和 DNA 损伤引发乳腺癌细胞凋亡

阅读:5
作者:Mohamed N Abd Al Moaty, Yeldez El Kilany, Laila F Awad, Saied M Soliman, Assem Barakat, Nihal A Ibrahim, Marwa M Abu-Serie, Matti Haukka, Amira El-Yazbi, Mohamed Teleb

Abstract

Combinations of apoptotic inducers are common clinical practice in breast cancer. However, their efficacy is limited by the heterogeneous pharmacokinetic profiles. An advantageous alternative is merging their molecular entities in hybrid multitargeted scaffolds exhibiting synergistic activities and uniform distribution. Herein, we report apoptotic inducers simultaneously targeting DNA and CDK-2 (cyclin-dependent kinase-2) inspired by studies revealing that CDK-2 inhibition sensitizes breast cancer to DNA-damaging agents. Accordingly, rationally substituted pyrimidines and triazolopyrimidines were synthesized and assayed by MTT against MCF-7, MDA-MB231, and Wi-38 cells compared to doxorubicin. The N-(4-amino-2-((2-hydrazinyl-2-oxoethyl)thio)-6-oxo-1,6-dihydropyrimidin-5-yl)acetamide 5 and its p-nitrophenylhydrazone 8 were the study hits against MCF-7 (IC50 = 0.050 and 0.146 μM) and MDA-MB231 (IC50 = 0.826 and 0.583 μM), induced DNA damage at 10.64 and 30.03 nM, and inhibited CDK-2 (IC50 = 0.172 and 0.189 μM). 5 induced MCF-7 apoptosis by 46.75% and disrupted cell cycle during S phase. Docking and MD simulations postulated their stable key interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。