Hypoxia Induces a Metabolic Shift and Enhances the Stemness and Expansion of Cochlear Spiral Ganglion Stem/Progenitor Cells

缺氧诱导代谢转变并增强耳蜗螺旋神经节干细胞/祖细胞的干细胞性和扩增

阅读:4
作者:Hsin-Chien Chen, Jen-Tin Lee, Cheng-Ping Shih, Ting-Ting Chao, Huey-Kang Sytwu, Shiue-Li Li, Mei-Cho Fang, Hang-Kang Chen, Yi-Chun Lin, Chao-Yin Kuo, Chih-Hung Wang

Abstract

Previously, we demonstrated that hypoxia (1% O2) enhances stemness markers and expands the cell numbers of cochlear stem/progenitor cells (SPCs). In this study, we further investigated the long-term effect of hypoxia on stemness and the bioenergetic status of cochlear spiral ganglion SPCs cultured at low oxygen tensions. Spiral ganglion SPCs were obtained from postnatal day 1 CBA/CaJ mouse pups. The measurement of oxygen consumption rate, extracellular acidification rate (ECAR), and intracellular adenosine triphosphate levels corresponding to 20% and 5% oxygen concentrations was determined using a Seahorse XF extracellular flux analyzer. After low oxygen tension cultivation for 21 days, the mean size of the hypoxia-expanded neurospheres was significantly increased at 5% O2; this correlated with high-level expression of hypoxia-inducible factor-1 alpha (Hif-1α), proliferating cell nuclear antigen (PCNA), cyclin D1, Abcg2, nestin, and Nanog proteins but downregulated expression of p27 compared to that in a normoxic condition. Low oxygen tension cultivation tended to increase the side population fraction, with a significant difference found at 5% O2 compared to that at 20% O2. In addition, hypoxia induced a metabolic energy shift of SPCs toward higher basal ECARs and higher maximum mitochondrial respiratory capacity but lower proton leak than under normoxia, where the SPC metabolism was switched toward glycolysis in long-term hypoxic cultivation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。