Urinary pellet sample preparation for shotgun proteomic analysis of microbial infection and host-pathogen interactions

尿液颗粒样品制备用于微生物感染和宿主-病原体相互作用的散弹枪蛋白质组学分析

阅读:4
作者:Yanbao Yu, Rembert Pieper

Abstract

Urine is one of the most important biofluids in clinical proteomics, and in the past decades many potential disease biomarkers have been identified using mass spectrometry-based proteomics. Current studies mainly perform analyses of the urine supernatant devoid of cells and cell debris, and the pellet (or sediment) fraction is discarded. However, the pellet fraction is biologically of interest. It may contain whole human cells shed into the urine from anatomically proximal tissues and organs (e.g., kidney, prostate, bladder, urothelium, and genitals), disintegrated cells and cell aggregates derived from such tissues, viruses and microbial organisms which colonize or infect the urogenital tract. Knowledge of the function, abundance, and tissue of origin of such proteins can explain a pathological process, identify a microbe as the cause of urinary tract infection, and measure the human immune response to the infection-associated pathogen(s). Successful detection of microbial species in the urinary pellet via proteomics can serve as a clinical diagnostic alternative to traditional cell culture-based laboratory tests. Filter-aided sample preparation (FASP) has been widely used in shotgun proteomics. The methodology presented here implements an effective lysis of cells present in urinary pellets, solubilizes the majority of the proteins derived from microbial and human cells, and generates enzymatic digestion-compatible protein mixtures using FASP followed by optimized desalting procedures to provide a peptide fraction for sensitive and comprehensive LC-MS/MS analysis. A highly parallel sample preparation method in 96-well plates to allow scaling up such experiments is discussed as well. Separating peptides by nano-LC in one dimension followed by online MS/MS analysis on a Q-Exactive mass spectrometer, we have shown that more than 1,000 distinct microbial proteins and 1,000 distinct human proteins can be identified from a single experiment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。