Polystyrene Nanoplastic Exposure Induces Developmental Toxicity by Activating the Oxidative Stress Response and Base Excision Repair Pathway in Zebrafish (Danio rerio)

聚苯乙烯纳米塑料暴露通过激活斑马鱼 (Danio rerio) 的氧化应激反应和碱基切除修复途径诱导发育毒性

阅读:9
作者:Meilan Feng, Juanjuan Luo, Yiping Wan, Jiannan Zhang, Chunjiao Lu, Maya Wang, Lu Dai, Xiaoqian Cao, Xiaojun Yang, Yajun Wang

Abstract

The widespread accumulation of nanoplastics is a growing concern for the environmental and human health. However, studies on the mechanisms of nanoplastic-induced developmental toxicity are still limited. Here, we systematically investigated the potential biological roles of nanoplastic exposure in zebrafish during the early developmental stage. The zebrafish embryos were subjected to exposure to 100 nm polystyrene nanoplastics with different concentrations (0, 100, 200, and 400 mg/L). The results indicated that nanoplastic exposure could decrease the hatching and survival rates of zebrafish embryos. In addition, the developmental toxicity test indicated that nanoplastic exposure exhibits developmental toxicity via the inhibition of the heart rate and body length in zebrafish embryos. Besides, behavioral activity was also significantly suppressed after 96 h of nanoplastic exposure in zebrafish larvae. Further biochemical assays revealed that nanoplastic-induced activation of the oxidative stress responses, including reactive oxygen species accumulation and enhanced superoxide dismutase and catalase activities, might affect developmental toxicity in zebrafish embryos. Furthermore, a quantitative polymerase chain reaction assay demonstrated that the mRNA levels of the base excision repair (BER) pathway-related genes, including lig1, lig3, polb, parp1, pold, fen1, nthl1, apex, xrcc1, and ogg1, were altered in zebrafish embryos for 24 h after nanoplastic exposure, indicating that the activation of the BER pathway would be stimulated after nanoplastic exposure in zebrafish embryos. Therefore, our findings illustrated that nanoplastics could induce developmental toxicity through activation of the oxidative stress response and BER pathways in zebrafish.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。