Mechanisms of Intravascular Linear Ablation Induced Restenosis in Rabbit Abdominal Aorta

兔腹主动脉血管内线性消融致血管内再狭窄的机制

阅读:6
作者:Qiang Chen, Manman Wang, Shuai Shao, Hongze Liu, Xiaodong Xia, Gary Tse, Meng Yuan, Yue Zhang, Xue Liang, Tong Liu, Guangping Li

Conclusions

RBA can depress the intimal hyperplasia and promote dilatation of the artery to greater extents than PTA at 28 days. However, this did not involve TLR-4 signaling pathway, which likely plays a negligible role in mediating restenosis. Reduction of intimal hyperplasia may be due to injury of ablation to the tunica media and inhibition of VSMC proliferation and migration.

Methods

After establishing an atherosclerosis model based on endothelial abrasion and high cholesterol diet, forty-five rabbits were randomly divided into three groups: RBA (n=20), percutaneous transluminal angioplasty (PTA) (n=20), and control groups (n=5). The RBA and PTA groups were subdivided according to harvested time posttreatment, respectively (1 hour, 7 days, 14 days, and 28 days). Aorta segments were then isolated for hematoxylin and eosin staining, Masson trichrome staining, immunohistochemistry, and Western blot for TLR-4, NF-κB, MCP-1, and VCAM-1expression.

Results

At 28 days, intimal area was significantly lower in the RBA group compared to the PTA and control groups, whilst luminal and medial area were comparable in the RBA and PTA group but higher and lower than the control group, respectively. Expression of TLR-4, NF-κB, MCP-1, and VCAM-1 showed no significant difference between RBA and PTA groups. Conclusions: RBA can depress the intimal hyperplasia and promote dilatation of the artery to greater extents than PTA at 28 days. However, this did not involve TLR-4 signaling pathway, which likely plays a negligible role in mediating restenosis. Reduction of intimal hyperplasia may be due to injury of ablation to the tunica media and inhibition of VSMC proliferation and migration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。