Multiomics analyses reveals Anaplasma phagocytophilum Ats-1 induces anti-apoptosis and energy metabolism by upregulating the respiratory chain-mPTP axis in eukaryotic mitochondria

多组学分析显示,嗜吞噬细胞无形体 Ats-1 通过上调真核线粒体中的呼吸链-mPTP 轴来诱导抗凋亡和能量代谢

阅读:5
作者:Ruirui Li #, Zhongchen Ma #, Wei Zheng #, Zhen Wang, Jihai Yi, Yangyang Xiao, Yong Wang, Chuangfu Chen

Background

Anaplasma translocated substrate 1 (Ats-1) is an effector of type 4 secretory systems (T4SS) and the main virulence factor of Anaplasma phagocytophilum. Ats-1 is involved in the regulation of host cell biological processes, but the specific molecular mechanism of its action is unclear.

Conclusions

This study demonstrated that Anaplasma phagocytophilum Ats-1 induces anti-apoptosis and energy metabolism by upregulating the respiratory chain-mPTP axis in eukaryotic mitochondria. These results provide a better understanding of the pathogenic mechanism of Anaplasma phagocytophilum within host cells.

Results

In this study, we identified Ats-1 as involved in mitochondrial respiratory regulation of HEK293T cells by multi-omics analysis. After intracellular expression of Ats-1, adenosine triphosphate levels and the proliferation of HEK293T cells were both up-regulated, while HEK293T cells apoptosis was inhibited. Ats-1 targeted translocation to the mitochondria where it up-regulated the expression of NDUFB5, NDUFB3, NDUFS7, COX6C, and SLC25A5, thereby enhancing energy production and inhibiting HEK293T cells apoptosis while enhancing HEK293T cells proliferation, and ultimately facilitating Anaplasma phagocytophilum replication in HEK293T cells. Conclusions: This study demonstrated that Anaplasma phagocytophilum Ats-1 induces anti-apoptosis and energy metabolism by upregulating the respiratory chain-mPTP axis in eukaryotic mitochondria. These results provide a better understanding of the pathogenic mechanism of Anaplasma phagocytophilum within host cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。