NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes

NADPH 氧化酶依赖的 NLRP3 炎症小体活化及其在多壁碳纳米管肺纤维化中的重要作用

阅读:5
作者:Bingbing Sun, Xiang Wang, Zhaoxia Ji, Meiying Wang, Yu-Pei Liao, Chong Hyun Chang, Ruibin Li, Haiyuan Zhang, André E Nel, Tian Xia

Abstract

The purpose of this paper is to elucidate the key role of NADPH oxidase in NLRP3 inflammasome activation and generation of pulmonary fibrosis by multi-walled carbon nanotubes (MWCNTs). Although it is known that oxidative stress plays a role in pulmonary fibrosis by single-walled CNTs, the role of specific sources of reactive oxygen species, including NADPH oxidase, in inflammasome activation remains to be clarified. In this study, three long aspect ratio (LAR) materials (MWCNTs, single-walled carbon nanotubes, and silver nanowires) are used to compare with spherical carbon black and silver nanoparticles for their ability to trigger oxygen burst activity and NLRP3 assembly. All LAR materials but not spherical nanoparticles induce robust NADPH oxidase activation and respiratory burst activity in THP-1 cells, which are blunted in p22(phox) -deficient cells. The NADPH oxidase is directly involved in lysosomal damage by LAR materials, as demonstrated by decreased cathepsin B release and IL-1β production in p22(phox) -deficient cells. Reduced respiratory burst activity and inflammasome activation are also observed in bone marrow-derived macrophages from p47(phox) -deficient mice. Moreover, p47(phox) -deficient mice have reduced IL-1β production and lung collagen deposition in response to MWCNTs. Lung fibrosis is also suppressed by N-acetyl-cysteine in wild-type animals exposed to MWCNTs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。