Mechanical Stimulation after Centrifuge-Free Nano-Electroporative Transfection Is Efficient and Maintains Long-Term T Cell Functionalities

无离心纳米电穿孔转染后的机械刺激有效且可维持长期 T 细胞功能

阅读:5
作者:Andy Tay, Nicholas Melosh

Abstract

Transfection is an essential step in genetic engineering and cell therapies. While a number of non-viral micro- and nano-technologies have been developed to deliver DNA plasmids into the cell cytoplasm, one of the most challenging and least efficient steps is DNA transport to and expression in the nucleus. Here, the magnetic nano-electro-injection (MagNEI) platform is described which makes use of oscillatory mechanical stimulation after cytoplasmic delivery with high aspect-ratio nano-structures to achieve stable (>2 weeks) net transfection efficiency (efficiency × viability) of 50% in primary human T cells. This is, to the best of the authors' knowledge, the highest net efficiency reported for primary T cells using a centrifuge-free, non-viral transfection method, in the absence of cell selection, and with a clinically relevant cargo size (>12 kbp). Wireless mechanical stimulation downregulates the expression of microtubule motor protein gene, KIF2A, which increases local DNA concentration near the nuclei, resulting in enhanced DNA transfection. Magnetic forces also accelerate membrane repair by promoting actin cytoskeletal remodeling which preserves key biological attributes including cell proliferation and gene expressions. These results demonstrate MagNEI as a powerful non-viral transfection technique for progress toward fully closed, end-to-end T cell manufacturing with less human labor, lower production cost, and shorter delay.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。