Highly conductive carbon nanotube matrix accelerates developmental chloride extrusion in central nervous system neurons by increased expression of chloride transporter KCC2

高导电性碳纳米管基质通过增加氯离子转运蛋白 KCC2 的表达来加速中枢神经系统神经元中氯离子的发育

阅读:5
作者:Wolfgang Liedtke, Michele Yeo, Hongbo Zhang, Yiding Wang, Michelle Gignac, Sara Miller, Ken Berglund, Jie Liu

Abstract

Exceptional mechanical and electrical properties of carbon nanotubes (CNT) have attracted neuroscientists and neural tissue engineers aiming to develop novel devices that interface with nervous tissues. In the central nervous system (CNS), the perinatal chloride shift represents a dynamic change that forms the basis for physiological actions of γ-aminobutyric acid (GABA) as an inhibitory neurotransmitter, a process of fundamental relevance for normal functioning of the CNS. Low intra-neuronal chloride concentrations are maintained by a chloride-extruding transporter, potassium chloride cotransporter 2 (KCC2). KCC2's increasing developmental expression underlies the chloride shift. In neural injury, repressed KCC2 expression plays a co-contributory role by corrupting inhibitory neurotransmission. Mechanisms of Kcc2 up-regulation are thus pertinent because of their medical relevance, yet they remain elusive. Here, it is shown that primary CNS neurons originating from the cerebral cortex, cultured on highly-conductive few-walled-CNT (fwCNT) have a strikingly accelerated chloride shift caused by increased KCC2 expression. KCC2 upregulation is dependent on neuronal voltage-gated calcium channels (VGCC) and, furthermore, on calcium/calmodulin-dependent kinase II, which is linked to VGCC-mediated calcium-influx. It is also demonstrated that accelerated Kcc2 transcription in brain-slices prepared from genetically-engineered reporter mice, in which Kcc2 promoter drives luciferase, when the cerebral cortex of these mice is exposed to fwCNT-coated devices. Based on these findings, whether fwCNT can enhance neural engineering devices for the benefit of neural injury conditions associated with elevated neuronal intracellular chloride concentration-such as pain, epilepsy, traumatic neural injury and ischemia-can now be addressed. Taken together, our novel insights illustrate how fwCNTs can promote low neuronal chloride in individual neurons and thus inhibitory transmission in neural circuits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。