Abstract
There is an urgent need for reliable toxicity assays to support the human health risk assessment of an ever increasing number of engineered nanomaterials (ENMs). Animal testing is not a suitable option for ENMs. Sensitive in vitro models and mechanism-based targeted in vitro assays that enable accurate prediction of in vivo responses are not yet available. In this proof-of-principle study, publicly available mouse lung transcriptomics data from studies investigating xenobiotic-induced lung diseases are used and a 17-gene biomarker panel (PFS17) applicable to the assessment of lung fibrosis is developed. The PFS17 is validated using a limited number of in vivo mouse lung transcriptomics datasets from studies investigating ENM-induced responses. In addition, an ex vivo precision-cut lung slice (PCLS) model is optimized for screening of potentially inflammogenic and pro-fibrotic ENMs. Using bleomycin and a multiwalled carbon nanotube, the practical application of the PCLS method as a sensitive alternative to whole animal tests to screen ENMs that may potentially induce inhalation toxicity is shown. Conditional to further optimization and validation, it is established that a combination of PFS17 and the ex vivo PCLS method will serve as a robust and sensitive approach to assess lung inflammation and fibrosis induced by ENMs.
