Dietary fat composition, food matrix and relative polarity modulate the micellarization and intestinal uptake of carotenoids from vegetables and fruits

膳食脂肪成分、食物基质和相对极性调节蔬菜和水果中类胡萝卜素的胶束化和肠道吸收

阅读:9
作者:Purna Chandra Mashurabad, Ravindranadh Palika, Yvette Wilda Jyrwa, K Bhaskarachary, Raghu Pullakhandam

Abstract

Dietary fat increases carotenoid bioavailability by facilitating their transfer to the aqueous micellar fraction during digestion. However, the specific effect of both quantity and type of dietary fat required for optimal carotenoid absorption remained unexplored. In the present study, the effect of amount and type of vegetable oils on carotenoid micellarization from carrot, spinach, drumstick leaves and papaya using in vitro digestion/Caco-2 cell model have been assessed. Although, dietary fat (0.5-10% w/w) significantly increased the micellarization of carotenoids from all the test foods, the extent of increase was determined by the food matrix (papaya > drumstick = spinach > carrot) and polarity of carotenoids (lutein > β-carotene = α-carotene > lycopene). Among the dietary fats tested the carotenoid micellarization was twofold to threefold higher with dietary fat rich in unsaturated fatty acids (olive oil = soybean oil = sunflower oil) compared to saturated fatty acids (peanut oil = palm oil > coconut oil). Intestinal cell uptake of lutein exceeded that of β-carotene from micellar fraction of spinach leaves digested with various oils. However, cellular uptake of β-carotene is depended on the carotenoid content in micellar fraction rather than the type of fat used. Together these results suggest that food matrix, polarity of carotenoids and type of dietary fat determines the extent of carotenoid micellarization from vegetables and fruits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。