Corticotropin-releasing factor receptors CRF1 and CRF2 exert both additive and opposing influences on defensive startle behavior

促肾上腺皮质激素释放因子受体 CRF1 和 CRF2 对防御性惊吓行为既有附加影响,也有相反影响

阅读:5
作者:Victoria B Risbrough, Richard L Hauger, Amanda L Roberts, Wylie W Vale, Mark A Geyer

Abstract

The corticotropin-releasing factor (CRF) receptors (CRF1 and CRF2) are crucial mediators of physiological and behavioral responses to stress. In animals, CRF1 appears to primarily mediate CRF-induced anxiety-like responses, but the role of CRF2 during stress is still unclear. Here we report the effects of CRF1 and CRF2 on the magnitude and plasticity of defensive startle responses in mice. Startle plasticity is measured by inhibition of startle by sensory stimuli, i.e., prepulse inhibition (PPI), and is disrupted in patients with panic or posttraumatic stress disorders in which CRF neurotransmission may be overactive. Pharmacological blockade of CRF1 reversed both CRF-induced increases in startle and CRF-induced deficits in PPI. CRF2 blockade attenuated high-dose but not low-dose CRF-induced increases in startle and reduced PPI. Conversely, activation of CRF2 enhanced PPI. CRF had no effect on startle and increased PPI in CRF1 knock-out mice. These data indicate that CRF receptors act in concert to increase the magnitude of defensive startle yet in opposition to regulate the flexibility of startle. These data support a new model of respective CRF receptor roles in stress-related behavior such that, although both receptors enhance the magnitude of defensive responses, CRF1 receptors contravene, whereas CRF2 receptors enhance, the impact of sensory information on defensive behavior. We hypothesize that excessive CRF1 activation combined with reduced CRF2 signaling may contribute to information processing deficits seen in panic and posttraumatic stress disorder patients and support CRF1-specific pharmacotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。