Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions

下丘脑分泌素(食欲素)通过兴奋性直接作用和抑制性间接作用来调节背缝核中的血清素神经元

阅读:8
作者:Rong-Jian Liu, Anthony N van den Pol, George K Aghajanian

Abstract

The hypocretins (hcrt1 and hcrt2) are expressed by a discrete population of hypothalamic neurons projecting to many regions of the CNS, including the dorsal raphe nucleus (DRN), where serotonin (5-HT) neurons are concentrated. In this study, we investigated responses to hcrts in 216 physiologically identified 5-HT and non-5-HT neurons of the DRN using intracellular and whole-cell recording in rat brain slices. Hcrt1 and hcrt2 induced similar amplitude and dose-dependent inward currents in most 5-HT neurons tested (EC50, approximately 250 nm). This inward current was not blocked by the fast Na+ channel blocker TTX or in a Ca2+-free solution, indicating a direct postsynaptic action. The hcrt-induced inward current reversed near -18 mV and was primarily dependent on external Na+ but not on external or internal Ca2+, features typical of Na+/K+ nonselective cation channels. At higher concentrations, hcrts also increased spontaneous postsynaptic currents in 5-HT neurons (EC50, approximately 450-600 nm), which were TTX-sensitive and mostly blocked by the GABA(A) antagonist bicuculline, indicating increased impulse flow in local GABA interneurons. Accordingly, hcrts were found to increase the basal firing of presumptive GABA interneurons. Immunolabeling showed that hcrt fibers projected to both 5-HT and GABA neurons in the DRN. We conclude that hcrts act directly to excite 5-HT neurons primarily via a TTX-insensitive, Na+/K+ nonselective cation current, and indirectly to activate local inhibitory GABA inputs to 5-HT cells. The greater potency of hcrts in direct excitation compared with indirect inhibition suggests a negative feedback function for the latter at higher levels of hcrt activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。