A domain linking the AMPA receptor agonist binding site to the ion pore controls gating and causes lurcher properties when mutated

连接 AMPA 受体激动剂结合位点和离子孔的域控制门控,并在发生突变时产生潜伏特性

阅读:6
作者:Sabine M Schmid, Christoph Körber, Solveig Herrmann, Markus Werner, Michael Hollmann

Abstract

Ionotropic, AMPA-type glutamate receptors (GluRs) critically shape excitatory synaptic signals in the CNS. Ligand binding induces conformational changes in the glutamate-binding domain of the receptors that are converted into opening of the channel pore via three short linker sequences, a process referred to as gating. Although crystallization of the glutamate-binding domain and structural models of the ion pore advanced our understanding of ligand-binding dynamics and pore movements, the allosteric coupling of both events by the short linkers has not been described in detail. To study the role of the linkers in gating GluR1, we transplanted them between different GluRs and examined the electrophysiological properties of the resulting chimeric receptors in Xenopus laevis oocytes and HEK293 cells. We found that all three linkers decisively affect receptor functionality, agonist potency, and desensitization. One linker chimera was nondesensitizing and exhibited strongly increased agonist potencies, while fluxing ions even in the absence of agonist, similar to properties reported for the GluR1 lurcher mutation. Combining this new lurcher-like linker chimera with the original lurcher mutation allowed us to reassess the effect of lurcher on GluR1 gating properties. The observed differential but interdependent influence of linker and lurcher mutations on receptor properties suggests that the linkers are part of a fine-tuned structural element that normally stabilizes the closed ion pore. We propose that lurcher-like mutations act by disrupting this element such that ligand-induced conformational changes are not necessarily required to gate the channel.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。