Analysis of endogenous nucleotides by single cell capillary electrophoresis-mass spectrometry

单细胞毛细管电泳-质谱分析内源性核苷酸

阅读:5
作者:Jing-Xin Liu, Jordan T Aerts, Stanislav S Rubakhin, Xin-Xiang Zhang, Jonathan V Sweedler

Abstract

Analytical technologies that enable investigations at the single cell level facilitate a range of studies; here a lab-fabricated capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) platform was used to analyze anionic metabolites from individual Aplysia californica neurons. The system employs a customized coaxial sheath-flow nanospray interface connected to a separation capillary, with the sheath liquid and separation buffer optimized to ensure a stable spray. The method provided good repeatability of separation and reliable detection sensitivity for 16 mono-, di- and triphosphate nucleosides. For a range of anionic analytes, including cyclic adenosine monophosphate (cAMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP), the detection limits were in the low nanomolar range (<22 nM). A large Aplysia R2 neuron was used to demonstrate the ability of CE-ESI-MS to quantitatively characterize anionic metabolites within individual cells, with 15 nucleotides and derivatives detected. Following the method validation process, we probed smaller, 60 μm diameter Aplysia sensory neurons where sample stacking was used as a simple on-line analyte preconcentration approach. The calculated energy balance ([ATP] + 0.5 × [ADP])/([AMP] + [ADP] + [ATP]) of these cells was comparable with the value obtained from bulk samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。