Mechanism of Danhong Injection in the Treatment of Arrhythmia Based on Network Pharmacology, Molecular Docking, and In Vitro Experiments

基于网络药理学、分子对接及体外实验探讨丹红注射液治疗心律失常的作用机制

阅读:11
作者:Tingting Yu, Yuxin Li, Meihui Yan, Zhang Zhang, Xin Yuan, Sen Li

Aim

In this study, through network pharmacology and in vitro cell experiments, we explored the active compounds of DHI for the treatment of arrhythmia and predicted the potential targets of the drug to investigate its mechanism of action. Materials and

Background

Danhong injection (DHI) is widely used in the treatment of cardiovascular and cerebrovascular diseases, and its safety and effectiveness have been widely recognized and applied in China. However, the potential molecular mechanism of action for the treatment of arrhythmia is not fully understood.

Conclusion

DHI can alleviate aconitine-induced arrhythmia in an in vitro model, presumably because of its multitarget regulatory mechanism. Key genes, such as AKT1 and HMOX1, may contribute to the antiarrhythmic role of DHI in the heart.

Methods

First, the potential therapeutic effect of DHI on arrhythmia was investigated in an in vitro arrhythmia model using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), in which calcium transients were recorded to evaluate the status of arrhythmia. Next, the active compounds and key targets in the treatment of arrhythmia were identified through network pharmacology and molecular docking, and the key signaling pathways related to the treatment of arrhythmia were analyzed. Furthermore, we used real-time quantitative reverse transcription PCR (qRT-PCR) to verify the expression levels of key genes.

Results

Early afterdepolarizations (EADs) were observed during aconitine treatment in hiPSC-CMs, and the proarrhythmic effect of aconitine was partially rescued by DHI, indicating that the antiarrhythmic role of DHI was verified in an in vitro human cardiomyocyte model. To further dissect the underlying molecular basis of this observation, network pharmacology analysis was performed, and the results showed that there were 108 crosstargets between DHI and arrhythmia. Moreover, 30 of these targets, such as AKT1 and HMOX1, were key genes. In addition, the mRNA expression of AKT1 and HMOX1 could be regulated by DHI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。