Deciphering the endogenous SUMO-1 landscape: a novel combinatorial peptide enrichment strategy for global profiling and disease association

解读内源性 SUMO-1 景观:一种用于全局分析和疾病关联的新型组合肽富集策略

阅读:9
作者:Xiaoyu Zhang, Bowen Zhong, Yue Sun, Dan Liu, Xiancheng Zhang, Dongdong Wang, Cunli Wang, Huiling Gao, Manli Zhong, Haijuan Qin, Yang Chen, Zhiying Yang, Yan Li, Haijie Wei, Xindi Yang, Yukui Zhang, Bo Jiang, Lihua Zhang, Guangyan Qing

Abstract

Small ubiquitin-like modifier (SUMO) plays a pivotal role in diverse cellular processes and is implicated in diseases such as cancer and neurodegenerative disorders. However, large-scale identification of endogenous SUMO-1 faces challenges due to limited enrichment methods and its lower abundance compared to SUMO-2/3. Here we propose a novel combinatorial peptide strategy, combined with anti-adhesive polymer development, to enrich endogenous SUMO-1 modified peptides, revealing a comprehensive SUMOylation landscape. Utilizing phage display, we successfully identified a linear 12-mer and a cystine-linked cyclic 7-mer peptide ligand, specifically designed to target the C-terminal regions of SUMO-1 remnants. Building upon their high affinities and satisfactory complementarity, we developed the first artificial SUMO-1 enrichment materials, ultimately establishing a combinatorial peptide strategy that facilitates a comprehensive analysis of the endogenous SUMO-1 modified proteome in both cellular and tissue contexts. We successfully mapped 1312 SUMOylation sites in HeLa cells and 1365 along with 991 endogenous SUMOylation proteins in Alzheimer's disease (AD) mouse brain tissues. Notably, our method uncovered a significant upregulation of SUMO-1 in AD mouse brain tissue, providing new insights into SUMOylation's role in disease. Overall, this work represents the most thorough exploration of SUMO-1 modified proteomics and offers robust tools for elucidating the roles of SUMO-1's biological significance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。