The role of authigenic sulfides in immobilization of potentially toxic metals in the Bagno Bory wetland, southern Poland

自生硫化物在波兰南部巴尼奥博里湿地中固定潜在有毒金属中的作用

阅读:7
作者:Beata Smieja-Król, Janusz Janeczek, Arkadiusz Bauerek, Ingunn H Thorseth

Abstract

The supply of Cd, Cu, Fe, Pb, Zn, and Tl into a wetland in the industrial area of Upper Silesia, southern Poland via atmospheric precipitation and dust deposition has been counterbalanced by the biogenic metal sulfide crystallization in microsites of the thin (<30 cm) peat layer, despite the overall oxidative conditions in the wetland. Disequilibrium of the redox reactions in the peat pore water (pH 5.4-6.2) caused by sulfate-reducing microorganisms has resulted in the localized decrease in Eh and subsequent precipitation of micron- and submicron-sized framboidal pyrite, spheroidal ZnS and (Zn,Cd)S, and galena as revealed by high-resolution scanning electron microscopy (SEM)/energy dispersive spectrometer (EDS). Saturation index for each sulfide is at a maximum within the calculated Eh range of -80 and -146 mV. Lead was also immobilized in galena deposited in fungal filaments, possibly at a higher Eh. Thallium (up to 3 mg kg(-1)) in the peat strongly correlates with Zn, whereas Cu (up to 55 mg kg(-1)) co-precipitated with Pb. The metal sulfides occur within microbial exudates, which protect them from oxidation and mechanical displacement. Vertical distribution of toxic metals in the peat layer reflects differences in pollution loads from atmospheric deposition, which has been much reduced recently.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。