Base-resolution stratification of cancer mutations using functional variomics

使用功能变异组学对癌症突变进行碱基分辨率分层

阅读:5
作者:Song Yi, Ning-Ning Liu, Limei Hu, Hui Wang, Nidhi Sahni

Abstract

A complete understanding of human cancer variants requires new methods to systematically and efficiently assess the functional effects of genomic mutations at a large scale. Here, we describe a set of tools to rapidly clone and stratify thousands of cancer mutations at base resolution. This protocol provides a massively parallel pipeline to achieve high stringency and throughput. The approach includes high-throughput generation of mutant clones by Gateway, confirmation of variant identity by barcoding and next-generation sequencing, and stratification of cancer variants by multiplexed interaction profiling. Compared with alternative site-directed mutagenesis methods, our protocol requires less sequencing effort and enables robust statistical calling of allele-specific effects. To ensure the precision of variant interaction profiling, we further describe two complementary methods-a high-throughput enhanced yeast two-hybrid (HT-eY2H) assay and a mammalian-cell-based Gaussia princeps luciferase protein-fragment complementation assay (GPCA). These independent assays with standard controls validate mutational interaction profiles with high quality. This protocol provides experimentally derived guidelines for classifying candidate cancer alleles emerging from whole-genome or whole-exome sequencing projects as 'drivers' or 'passengers'. For ∼100 genomic mutations, the protocol-including target primer design, variant library construction, and sequence verification-can be completed within as little as 2-3 weeks, and cancer variant stratification can be completed within 2 weeks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。