Development of amperometric biosensor in modified carbon paste with enzymatic preparation based on lactase immobilized on carbon nanotubes

基于碳纳米管固定化乳糖酶的酶法制备改性碳糊安培型生物传感器的研制

阅读:9
作者:Aila Riany de Brito, Nadabe Dos Santos Reis, Polyany Cabral Oliveira, Denilde Vilas Bôas Rezende, Gabriel Pereira Monteiro, Glêydison Amarante Soares, Rodrigo Sá de Jesus, Antônio Santana Santos, Luiz Carlos Salay, Julieta Rangel de Oliveira, Marcelo Franco

Abstract

The variety of products derived from milk, without or with lactose, encourages the development of more effective analytical techniques that can be applied to the quality control of both the production line and the final products. Thus, in this work an efficient and minimally invasive method for the detection of lactose was proposed, using a biosensor containing the enzyme lactase (LAC) immobilised on carbon nanotubes (CNTs) that, when reacting with lactose, emit an electrochemical signal. This biosensor was connected to a potentiostat, and its electrochemical cell was composed of the following three electrodes: reference electrode (Ag/AgCl), auxiliary electrode (platinum wire), and working electrode (biosensor) on which graphite (carbon) paste (CP), CNTs, and LAC were deposited. The transmission electron microscopy and scanning electron microscopy were used in the characterisation of the composite morphology, indicating excellent interactions between the CNTs and LAC. The sensitivity of the CP/LAC/CNT biosensor was determined as 5.67 μA cm-2.mmol-1 L and detection limits around 100 × 10-6 mol L-1 (electrode area = 0.12 cm2) and an increase in the stability of the system was observed with the introduction of CNTs because, with about 12 h of use, there was no variation in the signal (current). The results indicate that the association between the CNTs and LAC favoured the electrochemical system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。