Quantifying spatial organization in point-localization superresolution images using pair correlation analysis

使用对相关分析量化点定位超分辨率图像中的空间组织

阅读:6
作者:Prabuddha Sengupta, Tijana Jovanovic-Talisman, Jennifer Lippincott-Schwartz

Abstract

The distinctive distributions of proteins within subcellular compartments both at steady state and during signaling events have essential roles in cell function. Here we describe a method for delineating the complex arrangement of proteins within subcellular structures visualized using point-localization superresolution (PL-SR) imaging. The approach, called pair correlation photoactivated localization microscopy (PC-PALM), uses a pair-correlation algorithm to precisely identify single molecules in PL-SR imaging data sets, and it is used to decipher quantitative features of protein organization within subcellular compartments, including the existence of protein clusters and the size, density and number of proteins in these clusters. We provide a step-by-step protocol for PC-PALM, illustrating its analysis capability for four plasma membrane proteins tagged with photoactivatable GFP (PAGFP). The experimental steps for PC-PALM can be carried out in 3 d and the analysis can be done in ∼6-8 h. Researchers need to have substantial experience in single-molecule imaging and statistical analysis to conduct the experiments and carry out this analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。