Oriented Cortical-Bone-Like Silk Protein Lamellae Effectively Repair Large Segmental Bone Defects in Pigs

定向皮质骨样丝蛋白片层有效修复猪大段骨缺损

阅读:9
作者:Yajun Shuai, Tao Yang, Meidan Zheng, Li Zheng, Jie Wang, Chuanbin Mao, Mingying Yang

Abstract

Assembling natural proteins into large, strong, bone-mimetic scaffolds for repairing bone defects in large-animal load-bearing sites remain elusive. Here this challenge is tackled by assembling pure silk fibroin (SF) into 3D scaffolds with cortical-bone-like lamellae, superior strength, and biodegradability through freeze-casting. The unique lamellae promote the attachment, migration, and proliferation of tissue-regenerative cells (e.g., mesenchymal stem cells [MSCs] and human umbilical vein endothelial cells) around them, and are capable of developing in vitro into cortical-bone organoids with a high number of MSC-derived osteoblasts. High-SF-content lamellar scaffolds, regardless of MSC inoculation, regenerated more bone than non-lamellar or low-SF-content lamellar scaffolds. They accelerated neovascularization by transforming macrophages from M1 to M2 phenotype, promoting bone regeneration to repair large segmental bone defects (LSBD) in minipigs within three months, even without growth factor supplements. The bone regeneration can be further enhanced by controlling the orientation of the lamella to be parallel to the long axis of bone during implantation. This work demonstrates the power of oriented lamellar bone-like protein scaffolds in repairing LSBD in large animal models.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。